AP Calculus
 How Do You Link Riemann Sum to Definite Integrals: The Graphic Novel!

$\int_{2}^{7} x^{3} d x$ What is this? ...Mommy?	$f(x)=x^{3}$
$\begin{gathered} =\text { The exact area between } \\ x=2, x=7, \\ y=0, \text { and } y=x^{3} \end{gathered}$	
= The sum of infinite rectangles under the curve of $f(x)=x^{3}$ to get the exact area.	Increase the number of rectangles to get more and more precise estimation of area.
$=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}$ (height of rectangle)(width of rectangle). $=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}(\text { current } x \text { value })^{3}\left(\frac{5}{n}\right)$	If we have n rectangles in $2 \leq x \leq 7$, then each rectangle is $\frac{7-2}{n}=\frac{5}{n}$ wide.

Homework:

Find the exact Riemann Equation that represents the following exact areas.

1. $\int_{5}^{11} x^{2} d x$
2. $\int_{-2}^{4} 3 x^{4} d x$
3. $\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \sin x d x$
4. $\int_{-10}^{-3} x^{8} d x$
