H.O.T. problem #1:

Write two complex numbers a + bi (where neither a nor b is zero) with a product of 34.

Write two complex numbers a + bi (where neither a nor b is zero) with a product of 45.

H.O.T. problem #1:

Write two complex numbers a + bi (where neither a nor b is zero) with a product of 34.

Write two complex numbers a + bi (where neither a nor b is zero) with a product of 45.

H.O.T. problem #1:

Write two complex numbers a + bi (where neither a nor b is zero) with a product of 34.

Write two complex numbers a + bi (where neither a nor b is zero) with a product of 45.

H.O.T. problem #1:

Write two complex numbers a + bi (where neither a nor b is zero) with a product of 34.

Write two complex numbers a + bi (where neither a nor b is zero) with a product of 45.

H.O.T. problem #2:

Which expressions are equivalent to -1?

- a) i^2 d) $(i^5)(i)$
- b) i^3 e) $i 3 4i^2$
- c) $1 + i^2$ f) $1 i^3 + 2i^2 i$

H.O.T. problem #2:

Which expressions are equivalent to -1?

a) i^2 b) i^3 c) $1 + i^2$ d) $(i^5)(i)$ e) $i - 3 - 4i^2$ f) $1 - i^3 + 2i^2 - i$

H.O.T. problem #2:

Which expressions are equivalent to -1?

a) i^2 b) i^3 c) $1 + i^2$ d) $(i^5)(i)$ e) $i - 3 - 4i^2$ f) $1 - i^3 + 2i^2 - i$

H.O.T. problem #3:

I am thinking of two complex numbers (where neither *a* nor *b* is zero) with a sum of 3 + i and a difference of -5 + 7i. Find the product of the two numbers.

H.O.T. problem #3:

I am thinking of two complex numbers (where neither *a* nor *b* is zero) with a sum of 3 + i and a difference of -5 + 7i. Find the product of the two numbers.

H.O.T. problem #3:

I am thinking of two complex numbers (where neither *a* nor *b* is zero) with a sum of 3 + i and a difference of -5 + 7i. Find the product of the two numbers.

H.O.T. problem #3:

I am thinking of two complex numbers (where neither *a* nor *b* is zero) with a sum of 3 + i and a difference of -5 + 7i. Find the product of the two numbers.

H.O.T. problem #4:

Find integers a, b, c, d such that: (a + bi)(c + di) = (3 + 36i)

H.O.T. problem #4:

Find integers *a*, *b*, *c*, *d* such that:

$$(a+bi)(c+di) = (3+36i)$$

H.O.T. problem #4:

Find integers a, b, c, d such that: (a + bi)(c + di) = (3 + 36i)

H.O.T. problem #4:

Find integers *a*, *b*, *c*, *d* such that: (a + bi)(c + di) = (3 + 36i)

H.O.T. problem #5:

Write a standard form quadratic with the solution:

$$\frac{9\pm\sqrt{249}}{14}$$

Write a standard form quadratic with the solution:

$$\frac{-3 \pm \sqrt{361}}{16}$$

H.O.T. problem #5:

Write a standard form quadratic with the solution:

$$\frac{9\pm\sqrt{249}}{14}$$

Write a standard form quadratic with the solution:

$$\frac{-3 \pm \sqrt{361}}{16}$$

H.O.T. problem #5:

Write a standard form quadratic with the solution:

$$\frac{9 \pm \sqrt{249}}{14}$$

Write a standard form quadratic with the solution:

$$\frac{-3 \pm \sqrt{361}}{16}$$

H.O.T. problem #6:

Find values of k so that the equation has (this is three separate questions):

- 1 real solution
- 2 real solutions
- 2 imaginary solutions

for the quadratic $x^2 - 2kx + k = 0$

H.O.T. problem #6:

Find values of k so that the equation has (this is three separate questions):

- 1 real solution
- 2 real solutions
- 2 imaginary solutions

for the quadratic $x^2 - 2kx + k = 0$

H.O.T. problem #6:

Find values of k so that the equation has (this is three separate questions):

- 1 real solution
- 2 real solutions
- 2 imaginary solutions

for the quadratic $x^2 - 2kx + k = 0$

H.O.T. problem #7:

Find values of k so that the equation has (this is three separate questions):

- 1 real solution
- 2 real solutions
- 2 imaginary solutions

for the quadratic $3kx^2 + 2x + 3k = 0$

H.O.T. problem #7:

Find values of *k* so that the equation has (this is three separate questions):

- 1 real solution
- 2 real solutions
- 2 imaginary solutions

for the quadratic $3kx^2 + 2x + 3k = 0$

H.O.T. problem #7:

Find values of k so that the equation has (this is three separate questions):

- 1 real solution
- 2 real solutions
- 2 imaginary solutions

for the quadratic $3kx^2 + 2x + 3k = 0$

H.O.T. problem #2.5:

Simplify $\frac{5-7i}{3i}$ **four** different ways – show out all work!

H.O.T. problem #2.5:

Simplify $\frac{5-7i}{3i}$ **four** different ways – show out all work!

H.O.T. problem #2.5:

Simplify $\frac{5-7i}{3i}$ **four** different ways – show out all work!

H.O.T. problem #1.5: (remember, you shouldn't be using a calculator \bigcirc) List out the first ten powers of i (so $i, i^2, i^3, ..., i^{10}$). What would i^{14} be? What would i^{19} be? What would i^{73} be? Please don't count out to 73 for this one – find a rule/pattern! Now use that pattern to find: i^{96} , i^{94} , and i^{101}

H.O.T. problem #1.5: (remember, you shouldn't be using a calculator 😌)

List out the first ten powers of *i* (so $i, i^2, i^3, ..., i^{10}$).

What would i^{14} be?

What would i^{19} be?

What would i^{73} be? Please don't count out to 73 for this one – find a rule/pattern!

Now use that pattern to find: i^{96} , i^{94} , and i^{101}