H.O.T. problem \#1:

Write two complex numbers $a+b i$ (where neither a nor b is zero) with a product of 34 .

Write two complex numbers $a+b i$ (where neither a nor b is zero) with a product of 45 .

H.O.T. problem \#1:

Write two complex numbers $a+b i$ (where neither a nor b is zero) with a product of 34 .
Write two complex numbers $a+b i$ (where neither a nor b is zero) with a product of 45 .

H.O.T. problem \#1:

Write two complex numbers $a+b i$ (where neither a nor b is zero) with a product of 34 .

Write two complex numbers $a+b i$ (where neither a nor b is zero) with a product of 45 .

H.O.T. problem \#1:

Write two complex numbers $a+b i$ (where neither a nor b is zero) with a product of 34 .

Write two complex numbers $a+b i$ (where neither a nor b is zero) with a product of 45 .
H.O.T. problem \#2:

Which expressions are equivalent to -1 ?
a) i^{2}
b) i^{3}
c) $1+i^{2}$
d) $\left(i^{5}\right)(i)$
e) $i-3-4 i^{2}$
f) $1-i^{3}+2 i^{2}-i$
H.O.T. problem \#2:

Which expressions are equivalent to -1 ?
a) i^{2}
b) i^{3}
c) $1+i^{2}$
d) $\left(i^{5}\right)(i)$
e) $i-3-4 i^{2}$
f) $1-i^{3}+2 i^{2}-i$
H.O.T. problem \#2:

Which expressions are equivalent to -1 ?
a) i^{2}
d) $\left(i^{5}\right)(i)$
b) i^{3}
e) $i-3-4 i^{2}$
c) $1+i^{2}$
f) $1-i^{3}+2 i^{2}-i$

H.O.T. problem \#3:

I am thinking of two complex numbers (where neither a nor b is zero) with a sum of $3+i$ and a difference of $-5+7 i$. Find the product of the two numbers.

H.O.T. problem \#3:

I am thinking of two complex numbers (where neither a nor b is zero) with a sum of $3+i$ and a difference of $-5+7 i$. Find the product of the two numbers.

H.O.T. problem \#3:

I am thinking of two complex numbers (where neither a nor b is zero) with a sum of $3+i$ and a difference of $-5+7 i$. Find the product of the two numbers.

H.O.T. problem \#3:

I am thinking of two complex numbers (where neither a nor b is zero) with a sum of $3+i$ and a difference of $-5+7 i$. Find the product of the two numbers.
H.O.T. problem \#4:

Find integers a, b, c, d such that:

$$
(a+b i)(c+d i)=(3+36 i)
$$

H.O.T. problem \#4:

Find integers a, b, c, d such that:

$$
(a+b i)(c+d i)=(3+36 i)
$$

H.O.T. problem \#4:

Find integers a, b, c, d such that:

$$
(a+b i)(c+d i)=(3+36 i)
$$

H.O.T. problem \#4:

Find integers a, b, c, d such that:

$$
(a+b i)(c+d i)=(3+36 i)
$$

H.O.T. problem \#5:

Write a standard form quadratic with the solution:

$$
\frac{9 \pm \sqrt{249}}{14}
$$

Write a standard form quadratic with the solution:

$$
\frac{-3 \pm \sqrt{361}}{16}
$$

H.O.T. problem \#5:

Write a standard form quadratic with the solution:

$$
\frac{9 \pm \sqrt{249}}{14}
$$

Write a standard form quadratic with the solution:

$$
\frac{-3 \pm \sqrt{361}}{16}
$$

H.O.T. problem \#5:

Write a standard form quadratic with the solution:

$$
\frac{9 \pm \sqrt{249}}{14}
$$

Write a standard form quadratic with the solution:

$$
\frac{-3 \pm \sqrt{361}}{16}
$$

H.O.T. problem \#6:

Find values of k so that the equation has (this is three separate questions):

- 1 real solution
- 2 real solutions
- 2 imaginary solutions
for the quadratic $x^{2}-2 k x+k=0$

H.O.T. problem \#6:

Find values of k so that the equation has (this is three separate questions):

- 1 real solution
- 2 real solutions
- 2 imaginary solutions
for the quadratic $x^{2}-2 k x+k=0$
H.O.T. problem \#6:

Find values of k so that the equation has (this is three separate questions):

- 1 real solution
- 2 real solutions
- 2 imaginary solutions
for the quadratic $x^{2}-2 k x+k=0$
H.O.T. problem \#7:

Find values of k so that the equation has (this is three separate questions):

- 1 real solution
- 2 real solutions
- 2 imaginary solutions
for the quadratic $3 k x^{2}+2 x+3 k=0$

H.O.T. problem \#7:

Find values of k so that the equation has (this is three separate questions):

- 1 real solution
- 2 real solutions
- 2 imaginary solutions
for the quadratic $3 k x^{2}+2 x+3 k=0$

H.O.T. problem \#7:

Find values of k so that the equation has (this is three separate questions):

- 1 real solution
- 2 real solutions
- 2 imaginary solutions
for the quadratic $3 k x^{2}+2 x+3 k=0$

H.O.T. problem \#2.5:

Simplify $\frac{5-7 i}{3 i}$ four different ways - show out all work!
H.O.T. problem \#2.5:

Simplify $\frac{5-7 i}{3 i}$ four different ways - show out all work!
H.O.T. problem \#2.5:

Simplify $\frac{5-7 i}{3 i}$ four different ways - show out all work!
H.O.T. problem \#1.5: (remember, you shouldn't be using a calculator ©)

List out the first ten powers of i (so $i, i^{2}, i^{3}, \ldots, i^{10}$).
What would i^{14} be?
What would i^{19} be?
What would i^{73} be? Please don't count out to 73 for this one find a rule/pattern!
Now use that pattern to find: i^{96}, i^{94}, and i^{101}
H.O.T. problem \#1.5: (remember, you shouldn't be using a calculator ©)

List out the first ten powers of i (so $i, i^{2}, i^{3}, \ldots, i^{10}$).
What would i^{14} be?
What would i^{19} be?
What would i^{73} be? Please don't count out to 73 for this one find a rule/pattern!

Now use that pattern to find: i^{96}, i^{94}, and i^{101}

