1) f(x) =Graph f(x) in a dashed line using
3 easy-to-plot pointsInverse $g(x) = \log_5 x$ Graph g(x) in a dashed line using

the points of f(x) in a **<u>dashed</u>** line using

Graph $h(x) = \log_5(x + 3)$ in a **solid** line using the points of g(x)- Don't forget to draw the asymptote of h(x)

Make a table with the 3 points on h(x) that you plotted:

x	h(x)

LABEL EACH FUNCTION WITH ITS NAME: f, g, or h

1) $f(x) = $	Graph $f(x)$ in a <u>dashed</u> line using
	3 easy-to-plot points
Inverse $g(x) = \log_5 x$	Graph $g(x)$ in a dashed line using the points of $f(x)$

Graph h(x) = log₅(x + 3) in a solid line using the points of g(x)
Don't forget to draw the asymptote of h(x)

Make a table with the 3 points on h(x) that you plotted:

x	h(x)

2) f(x) = _____ Graph f(x) in a <u>dashed</u> line using 3 easy-to-plot points Inverse $g(x) = \log_3 x$ Graph g(x) in a <u>dashed</u> line using

Graph g(x) in a **dashed** line using the points of f(x)

Graph h(x) = log₃(x) + 2 in a solid line using the points of g(x)
Don't forget to draw the asymptote of h(x)

Make a table with the 3 points on h(x) that you plotted:

x	h(x)

LABEL EACH FUNCTION WITH ITS NAME: f, g, or h

2) $f(x) = $	Graph $f(x)$ in a dashed line using
	3 easy-to-plot points
Inverse $g(x) = \log_3 x$	Graph $g(x)$ in a dashed line using
	the points of $f(x)$

Graph h(x) = log₃(x) + 2 in a solid line using the points of g(x)
Don't forget to draw the asymptote of h(x)

Make a table with the 3 points on h(x) that you plotted:

x	h(x)

3) f(x) = _____ Graph f(x) in a <u>dashed</u> line using 3 easy-to-plot points Inverse $g(x) = \log_2 x$ Graph g(x) in a <u>dashed</u> line using

the points of f(x)

Graph $h(x) = \log_2(x - 1) - 3$ in a **solid** line using the points of g(x)- Don't forget to draw the asymptote of h(x)

Make a table with the 3 points on h(x) that you plotted:

x	h(x)

LABEL EACH FUNCTION WITH ITS NAME: f, g, or h

3) $f(x) = $	Graph $f(x)$ in a <u>dashed</u> line using
	3 easy-to-plot points
Inverse $g(x) = \log_2 x$	Graph $g(x)$ in a dashed line using
	the points of $f(x)$

Graph $h(x) = \log_2(x - 1) - 3$ in a **solid** line using the points of g(x)- Don't forget to draw the asymptote of h(x)

Make a table with the 3 points on h(x) that you plotted:

x	h(x)

4) f(x) = _____ Graph f(x) in a <u>dashed</u> line using 3 easy-to-plot points Inverse $g(x) = \log_6 x$ Graph g(x) in a <u>dashed</u> line using the points of f(x)

Graph $h(x) = \log_6(x+2) - 1$ in a **solid** line using the points of g(x)- Don't forget to draw the asymptote of h(x)

Make a table with the 3 points on h(x) that you plotted:

x	h(x)

LABEL EACH FUNCTION WITH ITS NAME: f, g, or h

4) $f(x) = $	Graph $f(x)$ in a <u>dashed</u> line using 3 easy-to-plot points
Inverse $g(x) = \log_6 x$	Graph $g(x)$ in a dashed line using the points of $f(x)$

Graph $h(x) = \log (x + 2) - 1$ in a **solid** line using the points of g(x)- Don't forget to draw the asymptote of h(x)

Make a table with the 3 points on h(x) that you plotted:

x	h(x)

5) f(x) = _____ Graph f(x) in a <u>dashed</u> line using 3 easy-to-plot points

Inverse $g(x) = \ln(x)$ Graph

Graph g(x) in a **<u>dashed</u>** line using the points of f(x)

Graph $h(x) = \ln(x - 4) + 2$ in a **solid** line using the points of g(x)- Don't forget to draw the asymptote of h(x)

Make a table with the 3 points on h(x) that you plotted:

x	h(x)

LABEL EACH FUNCTION WITH ITS NAME: f, g, or h

5)
$$f(x) =$$
 _____ Graph $f(x)$ in a dashed line using
3 easy-to-plot points
Inverse $g(x) = \ln(x)$ Graph $g(x)$ in a dashed line using
the points of $f(x)$

Graph $h(x) = \ln(x - 4) + 2$ in a **solid** line using the points of g(x)- Don't forget to draw the asymptote of h(x)

Make a table with the 3 points on h(x) that you plotted:

x	h(x)