\qquad

NO CALCULATOR!

Write the radical expression and simplify:
"This radical expression is the sum of two terms.
The first term is a radical with an index of 3 and
The radicand is 2 with an exponent of 9 .
The second term is a radical raised to a power of 3 ,
With a radicand that is a perfect cube less than 100 but Greater than 30 , and the index is 3 .

Provide the expression in simplest form."
\square

Write as a single power of \boldsymbol{x} :
$\sqrt[4]{\sqrt[3]{x}} \cdot \sqrt{\sqrt[5]{x}}$

Convert to exponent form:

$\sqrt[3]{4^{5}}=$	$(\sqrt{x})^{3}=$
$\sqrt[5]{8}=$	$\sqrt[4]{23^{9}}=$
$(\sqrt[8]{15})^{3}=$	$\sqrt[3]{10^{7}}=$

$\sqrt[3]{10^{7}}=$

Simplify, reduce if possible, and write as a radical:
$\frac{5^{7 / 6}}{5^{5 / 6}}=$
$\left(9^{\frac{3}{5}}\right)^{\frac{2}{3}}=$
$\frac{4^{1 / 2}}{4^{1 / 4}}=$

Convert each to radical form and then evaluate mentally, if possible:
$(-16)^{\frac{1}{4}}=$
$(16)^{-1 / 4}=$
$(-32)^{\frac{1}{5}}=$
$16^{\frac{3}{2}}=$
$(-125)^{\frac{1}{3}}=$
$(27)^{-\frac{2}{3}}=$
$(-32)^{-\frac{1}{5}}=$
$(243)^{-\frac{1}{5}}=$
$(-64)^{-4 / 3}=$
$(25)^{\frac{3}{2}}=$
$(-100)^{\frac{3}{2}}=$
$(64)^{-\frac{2}{3}}=$
$(8)^{-\frac{2}{3}}=$
$(16)^{-7 / 4}=$

Write as a single radical (Hint: write in exponent form, then convert back to radicals):
$\sqrt[3]{5} \cdot \sqrt{2}$

$$
\frac{\sqrt[4]{(x+y)^{3}}}{\sqrt{x+y}}
$$

